Archive | Climate Change RSS feed for this section

Climate Change and the Bleak Future of My Hometown in Bangladesh

12 Jun

During my childhood, as soon as it turned dark outside, my father would become frantic and check whether all the windows and all the outlets to the outside world were closed. I could hear his voice from across the house shouting, “We cannot let any of the mosquitoes get inside! It takes only one bite to kill you!” Despite my father’s utmost effort to keep the mosquitoes out of our house, one of these sneaky little creatures would sometimes manage to get inside. What ensued then was my mother’s panic as she would cover me in insect-repellent creams.

To an American reader, everything I have described until now may seem unusual, but it was a very ordinary evening at any household in my hometown of Dhaka, Bangladesh. Deadly mosquito-borne diseases such as malaria and dengue are common in Dhaka so people live in constant fear of mosquitoes. My family, like any ordinary family, was just trying their best to stay alive.

The sky of Dhaka at evening.

I wish I could tell you that the situation has improved since then, but unfortunately, climate change will increase the spread of mosquito-borne diseases in Dhaka. Bangladesh is one of the countries most vulnerable to the effects of climate change both because of its geographical location and economic conditions (1). It is a low-lying, tropical country bound by the Bay of Bengal in the south, by Myanmar in the Southeast and by India in the North, East and West. A developing economy that is densely populated, its 158,570,535 citizens live in an area of 147,570 km2 (2). As a frame of reference, Bangladesh is approximately the size of Iowa, but has about half as many people as the entire United States.

Bangladesh’s capital, Dhaka, where I was born and raised, is the most crowded city in the world (3). The impending effects of climate change will surely exacerbate the occurrence of infectious disease and cause potentially significant public health challenges. Infectious diseases spread by mosquitoes, such as malaria and dengue, are endemic to the tropical Southeast Asian region. Dhaka’s poor infrastructure, such as a lack of drainage systems, waste disposal and the abundance of slums, create suitable habitats for mosquitoes and aggravate the effects of climate change on the spread of diseases (4).

Human-caused climate change is responsible for an increase in the global mean temperature, a phenomenon also known as global warming. When I was a child, every summer when I complained of the heat, my mother recalled the time right after I was born in the summer of 1998. She fondly reminisced about the tantrum I had thrown as a newborn in that sweltering hot weather and the trouble she had to endure to pacify me.

Later, my mother would come to find out that the temperature in 1998 was a record high at that time (5). To all my later complaints about the weather, she would say that the heat was nowhere as bad as that of the summer of 1998. However, as I got a little older, and especially during my teenage years, the summers became so unbearable that I never felt like stepping outside of the house. For the first time, I heard my mother say that every summer now reminded her of the summer of 1998 (5).

For the months of May through September, an increase of 1℃ has been observed from 1976-2008 (7). This increasing trend in temperature is causing seasonal patterns to change in Bangladesh (7). Normally, the Bengali calendar has 6 six seasons that last for two months each.

The seasons of Bangladesh in my memory have always changed in such a timely manner that it would make you wonder whether nature was following a clock. In my childhood, summers had sunny skies, an enjoyable warmth and the red hue of krishnachura flowers that brightened all of Dhaka. Summers used to be distinct from monsoon, which followed summer. The temperature used to drop during monsoon. However, nowadays summer and monsoon are converging into one season as monsoon starts earlier than before and the high temperatures of the summer prevail for a longer period of time.

The streets of Dhaka in the summer months lined with Krishnachura.

An increase in temperature generally facilitates the growth of the mosquito population. Warmer environments also speed up the maturity of the parasites they carry, which means that more mosquitoes also means a greater potential for disease transmission. Unfortunately, this increase in mean temperature favors both Anopheles mosquitoes, which transmit malaria, and Aedes aegypti, which transmit dengue fever (6).

Aedes Aegypti mosquito, the carrier of dengue fever.

Anopheles mosquito, the carrier of malaria.

 

 

 

 

 

Lab experiments show that at consistent temperatures of 32-35 ℃, the incubation period of Aedes aegypti mosquitoes is shortened by a full week from its incubation period of 12 days at 30 ℃ (7). As temperatures increase in Dhaka then, we can expect an increase in the incidence of mosquito-borne diseases as the incubation period of mosquitoes decrease. In addition, average temperatures during winter are expected to increase by 1.4 ℃ by 2030 (7). This changing weather pattern will shorten the length of the reproductive cycle of mosquitoes, thus increasing the rate of population growth (8). Mosquitoes are not only helped by the increase in temperature, but also by the increased amounts of rainfall in Dhaka, which experiences the tropical monsoon climate.

I have always had a love-hate relationship with monsoon. Even though the roads were muddy, and sometimes I was stuck inside the house all day during monsoon months, it was still a glorious time of the year. I was always excited about the loud rhythmic rattle of the rain and the clear green of leaves that you could see right after the rain stopped. But monsoon also meant knee-deep water that you sometimes had to wade through to get to school and being stuck in traffic for long hours because the rain water got into a car’s engine.

Life in Dhaka during the monsoon months.

The arrival of monsoon also evokes fear in the hearts of many because it is the season when the outbreaks of mosquito-borne diseases occur all over Dhaka. Analysis of rainfall from 1976-2008 showed an increasing trend in the amount of rainfall during monsoon (7). There has been a corresponding increase in outbreaks of dengue from June to August (2). Data recorded over 2008 and 2009 shows that the number of dengue cases increase from around 50 to above 800 following the arrival of the monsoon during the months of June to August.

This increasing amount of rainfall creates pools of stagnant water which become optimal breeding sites for mosquitoes. An increasing population of mosquitoes allows for a faster spread of diseases (8). The increasing amount of rainfall coupled with the increase in temperature will act together to increase the rates of mosquito-borne illnesses in Dhaka.

Monthly dengue cases averaged over 2000–2010, showing seasonal incidence (7). [Img: Sharmin et al. (4)]

Not only are the temperature and level of rainfall increasing, but the occurrences of weather extremes such as floods are also becoming more frequent. Bangladesh is located on a river delta plain fed by 230 rivers. In the north, the glaciers in the Himalayas are melting, while in the south, the sea levels of the Bay of Bengal are rising. Both the water from the melting glaciers and the rising sea levels make Bangladesh vulnerable to frequent flooding.

A severe flood occurs in Bangladesh every four to five years, but this frequency is expected to increase with further climate change (2). A study has found that if total precipitation increases by 5%, an increased 20% of area in Bangladesh is likely to be flooded. In the past, outbreaks of dengue fever have occurred during a flood. Flooding causes water congestion in Dhaka which creates breeding sites for mosquitoes, thus mosquito populations grow which leads to an outbreak of dengue. As frequencies of flood increase with climate change, incidences of dengue fever is also expected to increase (4).

Streets of Dhaka during a flood.

The overcrowding of Dhaka is also another factor that affects the spread of mosquito-related diseases. Being born and raised in Dhaka, I have always known Dhaka as overpopulated. While growing up, I was used to frequently being stuck at red lights for 15 minutes. Whenever we visited our family members who lived 20 minutes away, our rides never took less than an hour. However, lately, it is getting worse as the population in Dhaka has been exponentially increasing because of incoming “climate refugees.”

Climate change has affected the rural agriculture-based economy of Bangladesh as changes in temperature, level of precipitation, and seasonal patterns damage crop production. This adverse effect on agriculture has forced a migration the rural areas to Dhaka, the economic hub of the country. These “climate refugees” live in slums, which lack good sanitation systems, a safe drinking water supply, and proper cooking and health care facilities (9). These substandard living conditions create the perfect condition for the spread of mosquito-borne disease.

A shortage of reliable fresh, clean drinking water results in residents storing what water they have in containers such as drums and earthen jars. Unfortunately, these containers are not sealed, and so the Aedes aegypti mosquito lays its eggs in them, precipitating outbreaks of dengue in the city. As climate change continues to affect agriculture in rural areas more people will migrate to Dhaka. Without an improvement in both Dhaka’s infrastructure and the living conditions in these slums mosquitoes will have the ability to infect a greater number of people (4).

Stagnant water bodies are breeding sites for mosquitoes.

When I have trouble falling asleep at night, sometimes I wonder about the fate of Dhaka. Lying in my college dorm bed in Massachusetts, with not even a single mosquito in sight, I think about what will become of these mosquitoes in Dhaka. Could they wipe out the entire population of Dhaka in the next 20 years? Or are they going to mutate to become some super-mosquito creature which will take over the world?

Sometimes I have a dream, or rather a nightmare, that I am walking through the streets of Dhaka in a quarantine suit and everybody else is dressed similarly. In my dream, I cannot really recognize the faces of anyone because millions and millions of mosquitoes are buzzing in the air. You may say that my dream is too far-fetched, but how much better could the reality be?

-Bushra Tasneem (’20) is a Mathematics and Computer Science double major from Dhaka, Bangladesh. She enjoys reading poetry and taking walks in the woods in her free time. She originally wrote a version of this piece for ENG 119 Writing Roundtable This Overheating World.

Works Cited:

  1. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.; IPCC;New York, 2013; pp 28-62
  2. Dastagir, M.R.; Modeling recent climate change induced extreme events in Bangladesh: A Review; Weather and Climate Extremes. 2015, 7, 49-60.
  3. World Economic Forum. https://www.weforum.org/agenda/2017/05/these-are-the-world-s-most-crowded-cities/ (accessed April 13, 2018).
  4. Sharmin, S.; Viennet, E; Glass K.; Harley, D; The emergence of dengue in Bangladesh: epidemiology, challenges and future disease risk. Royal Society of Tropical Medicine and Hygiene. 2015, 109, 619-627.
  5. Stevens, W. Earth Temperature in 1998 Is Reported at Record High.The New York TImes, Dec 1998.
  6. Yi, H.; Devkota, B.R.; Yu, J.; Oh, K.; Kim, J.; Kim, H.; Effects of global warming on mosquitoes & mosquito-borne diseases and the new strategies for mosquito control. Entomological Research.2014, 44, 215-235.
  7. 7.Basak, J.K.; Titumir, R.A.M.; Dey, N.C.; Climate Change in Bangladesh: A Historical Analysis of Temperature and Rainfall Data. Journal of Environment. 2013, 2, 41-46.
  8. Bostan, N.; Javed, S.; Nabgha-e-Amen; Eqani, S. Tahir, F. Bokhari, H.; Dengue fever virus in Pakistan: effects of seasonal pattern and temperature change on distribution of vector and virus. Review of Medical Virology, 2017, 27.
  9. Molla N. A.;  Mollah K. A.; Ali G.; Fungladda W.; Shipin O.V.; Wongwit W;  Tomomi H; Quantifying disease burden among climate refugees using multidisciplinary approach: A case of Dhaka, Bangladesh. Urban Climate, 2014, 8, 126-137.  

Sustainability Challenge 2018 – Heat Efficiency

23 Apr

For this year’s House Sustainability Challenge (2017-2018), I teamed up with my classmate, Yuging Geng (’21), to design a project that could potentially increase the environment-friendly initiatives on campus. Living in Massachusetts, cold, winter-like makes up much of our academic year, making our heating systems a potential source both for energy savings and for improvement of personal comfort. Before moving to Ziskind, where I currently live, I was in Sessions House where my room felt significantly colder. However, closing my window disrupted my only source of fresh air, with the result that I often had to put on extra layers of clothes or purchase additional blankets to keep myself warm and comfortable. In Yuging’s house, Chase-Duckett, she noticed that her friends had variable temperatures in their rooms. For example, one of Yuging’s friends felt uncomfortable because it was too cold, while another friend’s room felt significantly warmer, sometimes even too warm. Based on these experiences, when the call went out for the Sustainability Challenge, we decided that students would benefit from a system in which they could view their dorm-room temperature so they could make better informed decisions about when to contact facilities to request a change in temperature.

We decided to wire in a breadboard, a temperature sensor (DS18B20), to Raspberry Pi 3 and code it, using Python, to collect temperature data and display it on a website (i.e. livestream). An additional benefit of using Raspberry Pi is that no changes in the infrastructure would need to be employed, as its performance mainly depends on Wi-Fi. Since we are both international students, we calculated the temperature in both Celsius and Fahrenheit. We envisioned this project as an early tool to raise awareness not only about campus heating systems, but also about the lack of ventilation during the summer. Take a look at our prototype website: https://melaraerika.wixsite.com/sustainchallenge for more info!

This year’s House Sustainability Challenge was sponsored by the Conway Center for Innovation & Entrepreneurship, the Design Thinking Initiative, the Office of Campus Sustainability, CEEDS, and the Office of Student Affairs.

-Erika Melara ’20 is a Scorpio who is happy that winter is finally fading away!

Proxy Carbon Pricing at Smith?

11 Dec

Environmental Science and Policy major Breanna Parker (’18) recently presented an interim report on her thesis “Proxy Carbon Pricing at Smith: An economic transition strategy to lower carbon emissions through informed decision-making”. The inspiration her work, as she explained it, was the report which was released this spring by the college’s study group on climate change. The report provided a series of recommendations to develop and internalize constant carbon emissions such as a carbon proxy price to help guide major problems in budget management along with other decision-making processes. Smith College currently emits 27,000 metric tons of carbon dioxide annually. While there are already a variety of new projects underway at Smith that will be more energy efficient (e.g. the new library), in order to significantly reduce our emissions, Parker recommends that the college apply proxy carbon pricing. With this honors thesis, Parker seeks to engage Smith stakeholders in order to standardize and incorporate the acceptance of carbon emissions into the decision-making process.

The specific mechanics of applying a carbon proxy is vital for a sustainable approach. Ultimately, this is an additional design criterion that people can use to evaluate different options. For instance, when evaluating a new purchasing offer, we first consider the quantities of carbon emissions obtained, then we modify the units to compare it with other options, and apply a proxy over the lifetime or life-cycle of a project since carbon emissions will continue to be released as the product is used. To this evaluation, we also add the initial and maintenance costs. With this method the complete carbon emissions cost can be used in comparison with other choices in order to select the most energy efficient and affordable plan. To help the audience better understand the process, Parker used the example of purchasing a light bulb. Which is a better choice- incandescent or LED? The incandescent light bulb has a cheaper initial cost, but has an expected lifetime of only about 1 year. In comparison, the LED light bulb has a lifetime of approximately 22 years. Since bulbs generate additional costs each time they must be replaced, even before it gets turned on, the incandescent starts out with a higher hidden cost. Moreover, incandescent light bulbs use more energy, which cause more carbon to be emitted. In comparison, the LED light bulb, although it has a higher initial purchasing cost, has a slower operating system that requires less energy and produces fewer carbon emissions. This, combined with its longer replacement interval, makes it the better option. This simple example highlights the importance of considering the entire lifetime cost of a system or component, which is not always considered.

Parker then spoke about some of the ways that Smith might be able to benefit from using proxy carbon evaluation. One example was in the renovation of Washburn House. When thinking about heating systems, there are two main approaches: geothermal or natural gas boilers. The latter is more common given its lower initial cost. Nonetheless, if the cost comparisons include long-term maintenance  and carbon emissions, the natural gas boilers have significantly higher life costs and higher carbon emissions, suggesting that a geothermal approach would be a better choice. She noted that carbon proxy evaluation can be used in other situations, too, and it is important and interesting to also consider the vehicles used at Smith. For instance, vans rely on gasoline, but with the availability of an electric parking station near campus, over the long run a transition to electric cars would mean lower carbon emissions and lower monetary costs.

Other universities have implemented different methodologies to acknowledge and lower their carbon emissions. For instance, Yale University has a carbon fee ($30) that is applied to all administrative units individually (buildings). Through some modifications in their infrastructure, they are able to read their carbon emissions levels, so if an academic building has lowered their carbon emissions, then they are able to gain a monetary revenue for other projects. Princeton University has a proxy carbon price similar to what Smith is considering. In this method, a tool was created for administrators to record the initial costs, operating and maintenance expenses, and apply a proxy carbon price to their projects. Swarthmore College has a combination of both a carbon fee ($100) and a proxy carbon price calculator.

Parker hopes that like other colleges and universities, Smith College will acknowledge its carbon emissions and move towards using carbon proxy evaluation for future projects so that the full cost- both environmental and financial- is part of the decision making process.

-CEEDS Intern Erika Melara (’20) is an Engineering major. She comes to us from El Salvador, where she enjoys eating pupusas and going to the beach.

Smith team takes on climate change video challenge

27 Feb

Each year the Environmental Engineering and Science Foundation (EESF) and the Association of Environmental Engineering and Science Professors (AEESP) put out a call to current undergraduate and graduate students studying environmental engineering or sciences worldwide for a video competition.

This year’s theme, “What can individuals do to help reduce climate change?”, inspired Jocelyn Yax ’18 (engineering), Amelia Wagner ’18J (engineering/government), and Jasmine Pacheco-Ramos ’19 (environmental science and policy) to take on the challenge. Assistant Professor Niveen Ismail in the Picker Engineering Program acted as the faculty advisor for the project.   Check out their video on YouTube.

The winning teams will be announced at the Excellence in Environmental Engineering and Science awards ceremony at the National Press Club in Washington D.C. on April 13, 2017.

eesf_logoMore on the contest rules:
The video should be targeted to motivate 8th grade and higher students to change daily habits that contribute to climate change. The video may also be used more broadly to motivate the general public to change simple patterns that contribute to climate change.

The video should motivate individuals to change daily habits that cause carbon emissions that may contribute to climate change. People have varying views on climate change. Contestants are urged to develop a message that acknowledges the breadth of opinions on this issue but that encourages everyone to make changes that will help with climate change. Because most people do not understand the roles of Environmental Engineers and Scientists, the video should end with brief reference as to how Environmental Engineers and Scientists are working on climate issues.

Smith’s New Energy Director

8 Apr

Smith’s new energy director, Matt Pfannenstiel, was recently interviewed by the Gate. Matt will be working to reduce campus energy use and greenhouse gas emissions. Welcome, Matt!

MattPfannenstiel-1-1-640x360

Out with the Old, in with the Insulated: The Renovation of Lamont Windows

19 Feb

One might consider general upkeep around a college campus to be pretty generic work; indeed, campuses like Smith consist of countless old buildings and houses that do not perform at modern standards. As students, we rarely think about how much these improvements benefit us. Additionally, we rarely think about how much of our comfort in our built spaces is inherently connected to the preservation of energy.

Lamont windows

Left: (Before) Original single pane wood windows. Right: (After) New Marvin aluminum clad wood with argon insulated glass.

Lamont windows_2

Left: Low-expansion foam insulation being installed behind frames. Right: Air filtration and water penetration testing.

An example of this is the renovations to Lamont House completed this past summer. Located on upper Elm Street, Lamont had all of its traditional single-pane wood windows replaced with double-pane aluminum-clad wood windows. In addition to improving the type of window, the new windows were tested to be sure that water and moisture will not find a way in between the sashes or around the frame. The edges behind the window’s frames were fully sealed with low-expansion foam to keep warm air from leaving and cold air from entering the rooms.

The results are noteworthy. Lamont House looks better, and it should be much more energy efficient and more comfortable for student residents.  

“A lot of the houses on campus have very old windows that do not have insulated glass, or the double pane set up, so a lot of heat that would otherwise be preserved escapes.” said Karla Youngblood, project manager and assistant director of facilities management, during an interview. She recalled going into a student’s room once and seeing three thick strips of duct tape placed over the cracks around the windows. She also remembered a time when she entered a room and saw the student’s bed moved to the furthest corner away from the window.

Youngblood reported that in recent years, students complaints on the cold and lack of insulation in their rooms have been on the rise. In a campus where community and collaboration dominate the daily routines of most students at Smith, Youngblood argued, no student should ever feel uncomfortable in the one space on campus that is entirely theirs. “Even if we are certain that these new window installations will help Smith’s energy bills, my biggest priority is always occupant comfort.” she said. Youngblood said that the Lamont window project is part of an ongoing effort on campus to update and insulate all of the houses. “Recently, we insulated the roof of Dewey, which is one of our oldest buildings on campus. Lamont was on our list for this summer, but houses like Tyler are definitely due to be renovated.”  

These improvements often go unnoticed by students and faculty at Smith; however, things do not have to be this way, said Dano Weisbord, director of campus sustainability and space planning. “We want to get the word out about these projects so that we can hear feedback from students who live in Lamont, and other houses that have been renovated to be more energy efficient and comfortable.”

Lamont_outside1

Before: Lamont House, west elevation.

Lamont outside_2

After: Lamont House, west elevation.

So, Lamont students, what is the verdict? As we move through February and the nights are consistently chilly, do you feel that your rooms are warmer and better insulated? The office of Campus Sustainability would love to hear your thoughts!

-Andrea Schmid, class of 2017, is an environmental science and policy major and a recently declared climate change concentrator. She is interested in environmental journalism and the role that digital media plays in the environmental movement.  She currently works as the communications intern for the Office of Campus Sustainability.

China Climate Change Project

28 Jul

China is a country that is industrializing as it is urbanizing. As a result, rapid development has come at the cost of environmental degradation.  With more emphasis being placed on climate change and with the COP21 United Nations Climate Change Conference in Paris coming up in December, the world’s leaders are closely watching China: the world’s biggest carbon dioxide emitter. After several weeks of reading and researching, our team has come to the conclusion that China is constantly negotiating between economic development and environmental protection. The country is trying to seek a balance between those two essential perspectives in order to achieve sustainable development. In our project, we assess the current situation of this balance, analyze its future trajectory and give our own policy recommendations. Each of us is focusing on this process from a different perspective. Chang is focusing on urbanization, Zara is interested in energy, and Xinruo is looking at public health.

IMG_0963
From left to right: Zara, Xinruo, and Chang.

I am Xinruo Guo, a rising sophomore. I usually go by Amy. I have not yet declared my major but I am interested in human health. Professor Daniel Gardner is the faculty adviser of this project and he is like a small database on China because he knows a lot of things about the country that I, as a Chinese citizen, do not know. This project has enabled me to learn a lot about the Chinese environment and public health issues that I did not know previously. Therefore, I really appreciate this chance and feel that I gained a lot from this summer research experience.

Hi! I’m Chang Liu (‘18), from Beijing, China. I have no idea what to major in yet (probably philosophy?). In this project, I focus my research on China’s urbanization process and its impacts on the environment, and seek a sustainable way of urbanizing China’s cities. Before this research, I knew nothing about environmental science. But having personally experienced the notorious pollution of my hometown, I wish to know more about China’s environmental issues, what caused them, and how to address them.

I’m Zara Jamshed (‘17) from New York City. I am an engineering major and will hopefully declare a minor in environmental science and policy soon. I’m really interested in energy technology, especially renewable energy sources. I am exploring how China might restructure its energy fleet away from coal-fired power to prioritize the environment without impeding its economic growth. Last fall, I took an anthropology course on China, but I didn’t know much about the country’s renewable energy initiatives or its role in climate change negotiations. I feel like I have learned a lot about China from my research, my co-workers and Professor Gardner.

This summer research project was made possible with the support of Smith College’s Center for the Environment, Ecological Design, and Sustainability.

A Sampling of Forest Ecology Research

15 Jul

This summer I have spent most of my days working as an intern for the Botanic Garden of Smith College under the guidance of Gaby Immerman, assisting the staff there with the maintenance of the various gardens and trees around campus. On Fridays, however, each intern engages in a personal research project in order to create a final product that benefits the Botanic Garden in some way. I am being supported by CEEDS to work with Michelle Jackson, a 2015 graduate of Smith College and a researcher in Professor Jesse Bellemare’s laboratory, on research about the effects of Eastern hemlock tree (Tsuga canadensis) decline on the liverwort species Bazzania trilobata.

Eastern hemlock trees have been in decline as populations of two invasive Asian insects, the hemlock woolly adelgid and the elongate hemlock scale, get established and feed on the trees. In forests in Chesterfield and at Smith College’s MacLeish Field Station in Whately these hemlocks are gradually being replaced by black birch (Betula lenta), changing the composition of the understory, the interactions of various animals, and the forests as whole systems. B. trilobata is associated with Eastern hemlocks, but Michelle is interested in finding evidence as to whether these liverworts are actually dependent on Eastern hemlocks.

thumb_IMG_1273_1024Liverwort Bazzania trilobata

Michelle is testing the effects of different predictor variables on the survival of B. trilobata. Primarily, she is testing the difference between liverworts in areas with hemlock versus patches of forest with birch growth. She is also comparing these results to liverworts growing in areas that have been clear-cut, or those where hemlock trees have been salvage logged. Since hemlocks are coniferous and black birch are deciduous, Michelle is also looking at how being covered by the differing leaf litter affects B. trilobata. Her research takes into account variables such as aspect, slope, radiation, and soil moisture. I have been helping Michelle by flagging plots and making observations about the survival states of samples of B. trilobata.

I have also had the opportunity to help the other researchers in the Bellemare lab with their individual projects. I have helped collect data for Elizabeth Besozzi ’16, who is working to determine the effects of the shift of forests from hemlock to birch on salamanders and the food webs in which they are involved. I have helped collect soil samples for Aliza Fassler ’17, who is looking to see how this same shift in forest composition affects the soil and carbon-nitrogen cycling. I have also gotten the opportunity to help Anna George ’17 prepare tree core samples for her project involving the appearance of an increased spread of magnolia trees (Magnolia tripetala) into locations further north than their typical range.

thumb_IMG_1260_1024
Eastern hemlock trees (coniferous), Tsuga canadensis, and black birch trees (deciduous), Betula lenta

I am hoping to write a more comprehensive article about the research going on at MacLeish Field Station, focusing especially on the research surrounding the hemlocks done by those I’ve worked with in Professor Jesse Bellemare’s laboratory. I think that this important research needs to be shared with the public to spread awareness about the impact of the actions of humans on the environment, including climate change and the resulting movement of species to new locations. Furthermore, I believe that this research is an important example of why places like the MacLeish Field Station, are conducive to research and preservation.

Isabella Fielding ‘17 is a rising Junior from Warwick, RI. She is majoring in Biology and English, and she aspires to be a scientific writer

SURFing Uncharted Waters

23 Jun

After an exploratory first year at Smith, I’m working as a Summer Undergraduate Research Fellow (SURF) with Camille Washington-Ottombre, Assistant Professor of Environmental Science and Policy, Dano Weisbord, Director of Campus Sustainability, and Andrea Schmid ‘17.

We are studying the resilience of Smith College.

The Resilience Alliance defines resilience as “the capacity of a system to absorb disturbance and reorganize while undergoing change so as to still retain essentially the same function, structure, identity, and feedbacks.” That’s not exactly cut-and-dried, and in the face of climate change, we’re dealing with a lot of uncertainty.

I’m two weeks into my research, and the most difficult part of this project is pinning down a research question that fully encompasses and properly frames our work for the summer. The study of resilience is a fresh field of inquiry and planning. In fact, there are no published papers or case studies specifically assessing the resilience of a college or university. This is not, however, a neglected approach. Many municipalities and watersheds have applied resilience thinking to their planning. Now, after years of mitigation and management, campus sustainability planners ride the crest of a breaking wave. Academics and professionals are understanding the need for campus sustainability to evolve into a holistic systems-based approach that equips institutions with the tools to adapt to the challenges of climate change. Our work is primary research.

Callie_cropc

We’re not simply exploring uncharted waters, we’re mapping them.

– Callie Sieh ’18J studies Environmental Science and Policy and interns in the Office of Campus Sustainability. In her free time she experiments with sound and image, talks to strangers, and explores New England.

Jeffrey Sachs: an Economist himself

18 Apr

I’d heard it all before; sustainable development is the only future for an increasingly global society, steeping in a burning cocktail of social injustices, stark economic inequalities and environmental degradation. I have been privileged to hear countless environmentalists, scholars, and activists preach the importance as well as the challenges of sustainable development over the past few years.

The big difference between that and Jeffrey Sachs’ April 8th evening lecture on Sustainable Development at Smith College was that I was hearing about it from an economist. And not just any economist. Sachs is a world-renowned economist who serves as a senior adviser to United Nations Secretary General Ban-Ki-Moon on the Millennium Development Goals. He is Director of the Earth Institute, and Director of the UN Sustainable Development Solutions Network.

Sachs

Sachs led a full auditorium of captivated students, community members, and professors through the ins and outs of sustainable development, the rise of capitalism, and poverty. He finished the lecture with harrowing statistics and evidence describing the environmental crises we are faced with as a result of capitalism’s insatiable, unsustainable appetite.

What intrigued me the most about the lecture were his concluding slides detailing the responsibilities of the “moral” university. The role of the university in sustainable development is special, critical, and enormous in helping to create a future for the billions of people on the planet. Education in sustainable development, research and design of sustainable development systems, organizing social outreach to all stakeholders, and fostering and protecting a moral outlook are some of the responsibilities outlined by Sachs at the tail end of his lecture.

Craning my neck, I tried to gauge the President’s reaction to this slide. After all, administrative offices, classes, and student groups like Divest Smith College have been preaching these same principles for years now. Their biggest hurdle in seeing any action from the College has been economic; any mention of the changes needed to become a more sustainable institution generally leads to hysteria about the billion dollar endowment, so critical to Smith College. And standing on the stage in Weinstein Auditorium was someone ready and willing to make the jump over the hurdle and onto the right side of history; an economist himself.

-Lily Carlisle-Reske is a sophomore at Smith College from Alexandria, Virginia. She is studying environmental science and policy with a concentration in sustainable food and Italian. When she is not working she is probably in the kitchen stirring a pot of soup and baking bread. #veganchef